Beyond Neyman Pearson with e-values

02 Nov, 2023, 3:30-5:00 pm, GHC 8108

Speaker: Neil Xu

Abstract: A standard practice in statistical hypothesis testing is to mention the p-value alongside the accept/reject decision. We show the advantages of mentioning an e-value instead. With p-values, we cannot use an extreme observation (e.g. p≪α) for getting better frequentist decisions. With e-values it is straightforward, since they provide Type-I risk control in a generalized Neyman-Pearson setting with the decision task (a general loss function) determined post-hoc, after observation of the data -- thereby providing a handle on `roving α's'. When Type-II risks are taken into consideration, the only admissible decision rules in the post-hoc setting turn out to be e-value-based. Similarly, if the loss incurred when specifying a faulty confidence interval is not fixed in advance, standard confidence intervals and distributions may fail whereas e-confidence sets and e-posteriors still provide valid risk guarantees. Relevant papers: https://arxiv.org/abs/2205.00901 , https://arxiv.org/abs/2301.01335