Statistical Inference with Random Forests

Sep 6 (Tuesday) at Noon GHC-8102

Speaker: Lucas Mentch

Abstract: Modern learning algorithms are often seen as prediction-only tools, meaning that the interpretability and intuition provided by a more traditional modeling approach are sacrificed in order to achieve superior predictions. In this talk, we argue that this black-box perspective need not always be the case and develop formal statistical inference procedures for predictions generated by supervised learning ensembles. Ensemble methods based on bootstrapping, such as bagging and random forests, usually improve the predictive accuracy of individual trees, but fail to provide a framework in which distributional results can be easily determined. Instead of aggregating full bootstrap samples, we consider predicting by averaging over trees built on subsamples of the training set and demonstrate that the resulting estimator takes the form of a U-statistic. As such, predictions for individual feature vectors are asymptotically normal, allowing for confidence intervals to accompany predictions. In practice, a subset of subsamples is used for computational speed; here our estimators take the form of incomplete U-statistics and equivalent results are derived. We further demonstrate that this setup provides a framework for testing the significance of features. Moreover, the internal estimation method we develop allows us to estimate the variance parameters and perform these inference procedures at no additional computational cost. Demonstrations are provided using data from the ebird project hosted at Cornell University. Here is the link to the relevant paper: